
Package: DDoutlier (via r-universe)
October 12, 2024

Type Package

Title Distance & Density-Based Outlier Detection

Version 0.1.0

Author Jacob H. Madsen <jacob.madsen1@mail.com>

Maintainer Jacob H. Madsen <jacob.madsen1@mail.com>

Description Outlier detection in multidimensional domains.
Implementation of notable distance and density-based outlier
algorithms. Allows users to identify local outliers by
comparing observations to their nearest neighbors, reverse
nearest neighbors, shared neighbors or natural neighbors. For
distance-based approaches, see Knorr, M., & Ng, R. T. (1997)
<doi:10.1145/782010.782021>, Angiulli, F., & Pizzuti, C. (2002)
<doi:10.1007/3-540-45681-3_2>, Hautamaki, V., & Ismo, K. (2004)
<doi:10.1109/ICPR.2004.1334558> and Zhang, K., Hutter, M. &
Jin, H. (2009) <doi:10.1007/978-3-642-01307-2_84>. For
density-based approaches, see Tang, J., Chen, Z., Fu, A. W. C.,
& Cheung, D. W. (2002) <doi:10.1007/3-540-47887-6_53>, Jin, W.,
Tung, A. K. H., Han, J., & Wang, W. (2006)
<doi:10.1007/11731139_68>, Schubert, E., Zimek, A. & Kriegel,
H-P. (2014) <doi:10.1137/1.9781611973440.63>, Latecki, L.,
Lazarevic, A. & Prokrajac, D. (2007)
<doi:10.1007/978-3-540-73499-4_6>, Papadimitriou, S., Gibbons,
P. B., & Faloutsos, C. (2003) <doi:10.1109/ICDE.2003.1260802>,
Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000)
<doi:10.1145/342009.335388>, Kriegel, H.-P., Kröger, P.,
Schubert, E., & Zimek, A. (2009) <doi:10.1145/1645953.1646195>,
Zhu, Q., Feng, Ji. & Huang, J. (2016)
<doi:10.1016/j.patrec.2016.05.007>, Huang, J., Zhu, Q., Yang,
L. & Feng, J. (2015) <doi:10.1016/j.knosys.2015.10.014>, Tang,
B. & Haibo, He. (2017) <doi:10.1016/j.neucom.2017.02.039> and
Gao, J., Hu, W., Zhang, X. & Wu, Ou. (2011)
<doi:10.1007/978-3-642-20847-8_23>.

License MIT + file LICENSE

URL https://github.com/jhmadsen/DDoutlier

1

https://doi.org/10.1145/782010.782021
https://doi.org/10.1007/3-540-45681-3_2
https://doi.org/10.1109/ICPR.2004.1334558
https://doi.org/10.1007/978-3-642-01307-2_84
https://doi.org/10.1007/3-540-47887-6_53
https://doi.org/10.1007/11731139_68
https://doi.org/10.1137/1.9781611973440.63
https://doi.org/10.1007/978-3-540-73499-4_6
https://doi.org/10.1109/ICDE.2003.1260802
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/1645953.1646195
https://doi.org/10.1016/j.patrec.2016.05.007
https://doi.org/10.1016/j.knosys.2015.10.014
https://doi.org/10.1016/j.neucom.2017.02.039
https://doi.org/10.1007/978-3-642-20847-8_23
https://github.com/jhmadsen/DDoutlier

2 COF

Encoding UTF-8

LazyData true

Imports dbscan, proxy, pracma

Repository https://jhmadsen.r-universe.dev

RemoteUrl https://github.com/jhmadsen/ddoutlier

RemoteRef HEAD

RemoteSha 6408950fd119eb98321b6260e0bf894153754e27

Contents
COF . 2
DB . 3
INFLO . 5
KDEOS . 6
KNN_AGG . 7
KNN_IN . 8
KNN_SUM . 9
LDF . 10
LDOF . 12
LOCI . 13
LOF . 15
LOOP . 16
NAN . 17
NOF . 18
RDOS . 19
RKOF . 21

Index 23

COF Connectivity-based Outlier Factor (COF) algorithm

Description

Function to calculate the connectivity-based outlier factor as an outlier score for observations. Sug-
gested by Tang, J., Chen, Z., Fu, A. W. C., & Cheung, D. W. (2002)

Usage

COF(dataset, k = 5)

Arguments

dataset The dataset for which observations have a COF score returned
k The number of k-nearest neighbors to construct a SBN-path with, being the

number of neighbors for each observation to compare chaining-distance with. k
has to be smaller than the number of observations in dataset

DB 3

Details

COF computes the connectivity-based outlier factor for observations, being the comparison of
chaining-distances between observation subject to outlier scoring and neighboring observations.
The COF function is useful for outlier detection in clustering and other multidimensional domains.

Value

A vector of COF scores for observations. The greater the COF, the greater outlierness

Author(s)

Jacob H. Madsen

References

Tang, J., Chen, Z., Fu, A. W. C., & Cheung, D. W. (2002). Enhancing Effectiveness of Outlier
Detections for Low Density Patterns. In Pacific-Asia Conf. on Knowledge Discovery and Data
Mining (PAKDD). Taipei. pp. 535-548. DOI: 10.1007/3-540-47887-6_53

Examples

Create dataset
X <- iris[,1:4]

Find outliers by setting an optional k
outlier_score <- COF(dataset=X, k=10)

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)

Inspect the distribution of outlier scores
hist(outlier_score)

DB Distance-based outlier detection based on user-given neighborhood
size

Description

Function to calculate how many observations are within a certain sized neighborhood as an outlier
score. Outliers are classified according to a user-given threshold of observations to be within the
neighborhood. Suggested by Knorr, M., & Ng, R. T. (1997)

Usage

DB(dataset, d = 1, fraction = 0.05)

4 DB

Arguments

dataset The dataset for which observations are classified as outliers/inliers

d The radius of the neighborhood

fraction The proportion of the number of observations to be within the neighborhood for
observations to be classified as inliers. If the proportion of observations within
the neighborhood is less than the given fraction, observations are classified as
outliers

Details

DB computes a neighborhood for each observation given a radius (argument ’d’) and returns the
number of neighbors within the neighborhood. Observations are classified as inliers or outliers,
based on a proportion (argument ’fraction’) of observations to be within the neighborhood

Value

neighbors The number of neighbors within the neighborhood

classification Binary classification of observations as inlier or outlier

Author(s)

Jacob H. Madsen

References

Knorr, M., & Ng, R. T. (1997). A Unified Approach for Mining Outliers. In Conf. of the Centre
for Advanced Studies on Collaborative Research (CASCON). Toronto, Canada. pp. 236-248. DOI:
10.1145/782010.782021

Examples

Create dataset
X <- iris[,1:4]

Classify observations
cls_observations <- DB(dataset=X, d=1, fraction=0.05)$classification

Remove outliers from dataset
X <- X[cls_observations=='Inlier',]

INFLO 5

INFLO Influenced Outlierness (INFLO) algorithm

Description

Function to calculate the influenced outlierness as an outlier score for observations. Suggested by
Jin, W., Tung, A. K. H., Han, J., & Wang, W. (2006)

Usage

INFLO(dataset, k = 5)

Arguments

dataset The dataset for which observations have an INFLO score returned

k The number of reverse k-nearest neighbors to compare density with. k has to be
smaller than the number of observations in dataset

Details

INFLO computes the influenced outlierness score for observations, being the comparison of density
in neighborhood of observation subject to outlier scoring and density in the reverse neighborhood.
A kd-tree is used for kNN computation, using the kNN() function from the ’dbscan’ package. The
INFLO function is useful for outlier detection in clustering and other multidimensional domains

Value

A vector of INFLO scores for observations. The greater the INFLO, the greater outlierness

Author(s)

Jacob H. Madsen

References

Jin, W., Tung, A. K. H., Han, J., & Wang, W. (2006). Ranking Outliers Using Symmetric Neigh-
borhood Relationship. In Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD).
Singapore. pp 577-593. DOI: 10.1007/11731139_68

Examples

Create dataset
X <- iris[,1:4]

Find outliers by setting an optional k
outlier_score <- INFLO(dataset=X, k=10)

Sort and find index for most outlying observations

6 KDEOS

names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)

Inspect the distribution of outlier scores
hist(outlier_score)

KDEOS Kernel Density Estimation Outlier Score (KDEOS) algorithm with
gaussian kernel

Description

Function to calculate a density estimation as an outlier score for observations, over a range of k-
nearest neighbors. Suggested by Schubert, E., Zimek, A. & Kriegel, H-P. (2014)

Usage

KDEOS(dataset, k_min = 5, k_max = 10, eps = NULL)

Arguments

dataset The dataset for which observations have an KDEOS score returned

k_min The k parameter starting the k-range

k_max The k parameter ending the k-range. Has to be smaller than the number of
observations in dataset and greater than or equal to k_min

eps An optional minimum bandwidth. If eps is smaller than the mean reachability
distance for observations, eps is used. Otherwise mean reachability distance is
used as bandwidth

Details

KDEOS computes a kernel density estimation over a user-given range of k-nearest neighbors. The
score is normalized between 0 and 1, such that observation with 1 has the lowest density estimation
and greatest outlierness. A gaussian kernel is used for estimation with a bandwidth being the reach-
ability distance for neighboring observations. If a lower user-given bandwidth is desired, putting
more weight on outlying observations, eps has to be lower than the mean reachability distance for
observations. A kd-tree is used for kNN computation, using the kNN() function from the ’dbscan’
package. The KDEOS function is useful for outlier detection in clustering and other multidimen-
sional domains

Value

A vector of KDEOS scores normalized between 1 and 0, with 1 being the greatest outlierness

Author(s)

Jacob H. Madsen

KNN_AGG 7

References

Schubert, E., Zimek, A. & Kriegel, H-P. (2014). Generalized Outlier Detection with Flexible Ker-
nel Density Estimates. Proceedings of the 2014 SIAM International Conference on Data Mining.
Philadelphia, USA. pp. 542-550. DOI: 10.1137/1.9781611973440.63

Examples

Create dataset
X <- iris[,1:4]

Find outliers by setting an optional range of k's
outlier_score <- KDEOS(dataset=X, k_min=10, k_max=15)

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)

Inspect the distribution of outlier scores
hist(outlier_score)

KNN_AGG Aggregated k-nearest neighbors distance over different k’s

Description

Function to calculate aggregated distance to k-nearest neighbors over a range of k’s, as an outlier
score. Suggested by Angiulli, F., & Pizzuti, C. (2002)

Usage

KNN_AGG(dataset, k_min = 5, k_max = 10)

Arguments

dataset The dataset for which observations have an aggregated k-nearest neighbors dis-
tance returned

k_min The k parameter starting the k-range

k_max The k parameter ending the k-range. Has to be smaller than the number of
observations in dataset and greater than or equal to k_min

Details

KNN_AGG computes the aggregated distance to neighboring observations by aggregating the re-
sults from k_min-NN to k_max-NN, such that if k_min=1 and k_max=3, results from 1NN, 2NN
and 3NN are aggregated. A kd-tree is used for kNN computation, using the kNN function() from
the ’dbscan’ package. The KNN_AGG function is useful for outlier detection in clustering and
other multidimensional domains.

8 KNN_IN

Value

A vector of aggregated distance for observations. The greater the distance, the greater outlierness

Author(s)

Jacob H. Madsen

References

Angiulli, F., & Pizzuti, C. (2002). Fast Outlier Detection in High Dimensional Spaces. In Int.
Conf. on Knowledge Discovery and Data Mining (SIGKDD). Helsinki, Finland. pp. 15-26. DOI:
10.1007/3-540-45681-3_2

Examples

Create dataset
X <- iris[,1:4]

Find outliers by setting a range of k's
outlier_score <- KNN_AGG(dataset=X, k_min=10, k_max=15)

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)

Inspect the distribution of outlier scores
hist(outlier_score)

KNN_IN In-degree for observations in a k-nearest neighbors graph

Description

Function to calculate in-degree as an outlier score for observations, given a k-nearest neighbors
graph. Suggested by Hautamaki, V., & Ismo, K. (2004)

Usage

KNN_IN(dataset, k = 5)

Arguments

dataset The dataset for which observations have an in-degree returned

k The number of k-nearest neighbors to construct a graph with. Has to be smaller
than the number of observations in dataset

KNN_SUM 9

Details

KNN_IN computes the in-degree, being the number of reverse neighbors. For computing the in-
degree, a k-nearest neighbors graph is computed. A kd-tree is used for kNN computation, using the
kNN() function from the ’dbscan’ package. The KNN_IN function is useful for outlier detection in
clustering and other multidimensional domains.

Value

A vector of in-degree for observations. The smaller the in-degree, the greater outlierness

Author(s)

Jacob H. Madsen

References

Hautamaki, V., & Ismo, K. (2004). Outlier Detection Using k-Nearest Neighbour Graph. In Interna-
tional Conference on Pattern Recognition. Cambridge, UK. pp. 430-433. DOI: 10.1109/ICPR.2004.1334558

Examples

Create dataset
X <- iris[,1:4]

Find outliers by setting an optional k
outlier_score <- KNN_IN(dataset=X, k=10)

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = FALSE)

Inspect the distribution of outlier scores
hist(outlier_score)

KNN_SUM Sum of distance to k-nearest neighbors

Description

Function to calculate sum of distance to k-nearest neighbors as an outlier score, based on a kd-tree

Usage

KNN_SUM(dataset, k=5)

10 LDF

Arguments

dataset The dataset for which observations have a summed k-nearest neighbors distance
returned

k The number of k-nearest neighbors. k has to be smaller than the number of
observations in dataset

Details

KNN_SUM computes the sum of distance to neighboring observations. A kd-tree is used for kNN
computation, using the kNN() function from the ’dbscan’ package. The KNN_SUM function is
useful for outlier detection in clustering and other multidimensional domains.

Value

A vector of summed distance for observations. The greater distance, the greater outlierness

Author(s)

Jacob H. Madsen

Examples

Create dataset and set an optional k
X <- iris[,1:4]
K <- 5

Find outliers
outlier_score <- KNN_SUM(dataset=X, k=K)

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)

Inspect the distribution of outlier scores
hist(outlier_score)

LDF Local Density Factor (LDF) algorithm with gaussian kernel

Description

Function to calculate a Local Density Estimate (LDE) and Local Density Factor (LDF), as an outlier
score, with a gaussian kernel. Suggested by Latecki, L., Lazarevic, A. & Prokrajac, D. (2007)

Usage

LDF(dataset, k = 5, h = 1, c = 1)

LDF 11

Arguments

dataset The dataset for which observations have an LDE and LDF score returned

k The number of k-nearest neighbors to compare density estimation with. k has to
be smaller than number of observations in dataset

h User-given bandwidth for kernel functions. The greater the bandwidth, the
smoother kernels and lesser weight are put on outliers. Default is 1

c Scaling constant for comparison of LDE to neighboring observations. LDF is
the comparison of average LDE for an observation and its neighboring observa-
tions. Thus, c=1 gives results in an LDF between 0 and 1, while c=0 can result
in very large or infinite values of LDF. Default is 1

Details

LDF computes a kernel density estimation, called LDE, over a user-given number of k-nearest
neighbors. The LDF score is the comparison of Local Density Estimate (LDE) for an observation
to its neighboring observations. Naturally, if an observation has a greater LDE than its neighboring
observations, it has no outlierness whereas an observation with smaller LDE than its neighboring
observations has great outlierness. A kd-tree is used for kNN computation, using the kNN() function
from the ’dbscan’ package. The LDF function is useful for outlier detection in clustering and other
multidimensional domains

Value

LDE A vector of Local Density Estimate for observations. The greater the LDE, the
greater centrality

LDF A vector of Local Density Factor for observations. The greater the LDF, the
greater the outlierness

Author(s)

Jacob H. Madsen

References

Latecki, L., Lazarevic, A. & Prokrajac, D. (2007). Outlier Detection with Kernel Density Functions.
International Workshop on Machine Learning and Data Mining in Pattern Recognition: Machine
Learning and Data Mining in Pattern Recognition. pp. 61-75. DOI: 10.1007/978-3-540-73499-4_6

Examples

Create dataset
X <- iris[,1:4]

Find outliers by setting an optional range of k's
outlier_score <- LDF(dataset=X, k=10, h=2, c=1)$LDF

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)

12 LDOF

Inspect the distribution of outlier scores
hist(outlier_score)

LDOF Local Distance-based Outlier Factor (LDOF) algorithm

Description

Function to calculate Local Distance-based Outlier Factor (LDOF) as an outlier score for observa-
tions. Suggested by Zhang, K., Hutter, M. & Jin, H. (2009)

Usage

LDOF(dataset, k = 5)

Arguments

dataset The dataset for which observations have an LDOF score returned

k The number of nearest neighbors to compare distances with

Details

LDOF computes distance for an observations to its to k-nearest neighbors and compare the distance
with the average distances between the nearest neighbors. The LDOF function is useful for outlier
detection in clustering and other multidimensional domains

Value

A vector of LDOF scores for observations. The greater the LDOF score, the greater outlierness

Author(s)

Jacob H. Madsen

References

Zhang, K., Hutter, M. & Jin, H. (2009). A New Local Distance-based Outlier Detection Approach
for Scattered Real-World Data. Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing: Advances in Knowledge Discovery and Data Mining. pp. 813-822. DOI: 10.1007/978-3-642-
01307-2_84

LOCI 13

Examples

Create dataset
X <- iris[,1:4]

Find outliers by setting an optional range of k's
outlier_score <- LDOF(dataset=X, k=10)

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)

Inspect the distribution of outlier scores
hist(outlier_score)

LOCI Local Correlation Integral (LOCI) algorithm with constant nearest
neighbor parameter

Description

Function to calculate Local Correlation Integral (LOCI) as an outlier score for observations. Sug-
gested by Papadimitriou, S., Gibbons, P. B., & Faloutsos, C. (2003). Uses a k number of nearest
neighbors instead of a constant radius

Usage

LOCI(dataset, alpha = 0.5, nn = 20, k = 3)

Arguments

dataset The dataset for which observations have a LOCI returned

alpha The parameter setting the size of the sampling neighborhood, as a proportion
of the counting neighborhood, for observations to identify other observations in
their respective neighborhood. An alpha of 1 equals a sampling neighborhood
the size of the counting neighborhood (the size of distance to nn). An alpha of
0.5 equals a sampling neighborhood half the size of the counting neighborhood

nn The number of nearest neighbors to compare sampling neighborhood with. Orig-
inal paper suggest a constant user-given radius that includes at least 20 neighbors
in order to introduce statistical errors in MDEF. Default is 20

k The number of standard deviations the sampling neighborhood of an observation
should differ from the sampling neighborhood of neighboring observations, to
be an outlier. Default is set to 3 as used in original papers experiments

14 LOCI

Details

LOCI computes a counting neighborhood to the nn nearest observations, where the radius is equal
to the outermost observation. Within the counting neighborhood each observation has a sampling
neighborhood of which the size is determined by the alpha input parameter. LOCI returns an outlier
score based on the standard deviation of the sampling neighborhood, called the multi-granularity
deviation factor (MDEF). The LOCI function is useful for outlier detection in clustering and other
multidimensional domains

Value

npar_pi A vector of the number of observations within the sample neighborhood for
observations

avg_npar A vector of average number of observations within the sample neighborhood for
neighboring observations

sd_npar A vector of standard deviations for observations sample neighborhood

MDEF A vector of the multi-granularity deviation factor (MDEF) for observations. The
greater the MDEF, the greater the outlierness

norm_MDEF A vector of normalized MDEF-values, being sd_npar/avg_npar

class Classification of observations as inliers/outliers following the rule of k

Author(s)

Jacob H. Madsen

References

Papadimitriou, S., Gibbons, P. B., & Faloutsos, C. (2003). LOCI: Fast Outlier Detection Using the
Local Correlation Integral. In International Conference on Data Engineering. pp. 315-326. DOI:
10.1109/ICDE.2003.1260802

Examples

Create dataset
X <- iris[,1:4]

Classify observations
cls_observations <- LOCI(dataset=X, alpha=0.5, nn=20, k=1)$class

Remove outliers from dataset
X <- X[cls_observations=='Inlier',]

LOF 15

LOF Local Outlier Factor (LOF) algorithm

Description

Function to calculate the Local Outlier Factor (LOF) as an outlier score for observations. Suggested
by Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000)

Usage

LOF(dataset, k = 5)

Arguments

dataset The dataset for which observations have an LOF score returned

k The number of k-nearest neighbors to compare density with. k has to be smaller
than number of observations in dataset

Details

LOF computes a local density for observations with a user-given k-nearest neighbors. The density
is compared to the density of the respective nearest neighbors, resulting in the local outlier factor.
A kd-tree is used for kNN computation, using the kNN() function from the ’dbscan’ package. The
LOF function is useful for outlier detection in clustering and other multidimensional domains

Value

A vector of LOF scores for observations. The greater the LOF, the greater outlierness

Author(s)

Jacob H. Madsen

References

Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying Density-Based Lo-
cal Outliers. In Int. Conf. On Management of Data. Dallas, TX. pp. 93-104. DOI: 10.1145/342009.335388

Examples

Create dataset
X <- iris[,1:4]

Find outliers by setting an optional k
outlier_score <- LOF(dataset=X, k=10)

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)

16 LOOP

sort(outlier_score, decreasing = TRUE)

Inspect the distribution of outlier scores
hist(outlier_score)

LOOP Local Outlier Probability (LOOP) algorithm

Description

Function to calculate the Local Outlier Probability (LOOP) as an outlier score for observations.
Suggested by Kriegel, H.-P., Kröger, P., Schubert, E., & Zimek, A. (2009)

Usage

LOOP(dataset, k = 5, lambda = 3)

Arguments

dataset The dataset for which observations have a LOOP score returned

k The number of k-nearest neighbors to compare density with

lambda Multiplication factor for standard deviation. The greater lambda, the smoother
results. Default is 3 as used in original papers experiments

Details

LOOP computes a local density based on probabilistic set distance for observations, with a user-
given k-nearest neighbors. The density is compared to the density of the respective nearest neigh-
bors, resulting in the local outlier probability. The values ranges from 0 to 1, with 1 being the
greatest outlierness. A kd-tree is used for kNN computation, using the kNN() function from the
’dbscan’ package. The LOOP function is useful for outlier detection in clustering and other multi-
dimensional domains

Value

A vector of LOOP scores for observations. 1 indicates outlierness and 0 indicate inlierness

Author(s)

Jacob H. Madsen

References

Kriegel, H.-P., Kröger, P., Schubert, E., & Zimek, A. (2009). LoOP: Local Outlier Probabilities. In
ACM Conference on Information and Knowledge Management, CIKM 2009, Hong Kong, China.
pp. 1649-1652. DOI: 10.1145/1645953.1646195

NAN 17

Examples

Create dataset
X <- iris[,1:4]

Find outliers by setting an optional k
outlier_score <- LOOP(dataset=X, k=10, lambda=3)

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)

Inspect the distribution of outlier scores
hist(outlier_score)

NAN Natural Neighbor (NAN) algorithm to return the self-adaptive neigh-
borhood

Description

Function to identify natural neighbors and the right k-parameter for kNN graphs as suggested by
Zhu, Q., Feng, Ji. & Huang, J. (2016)

Usage

NAN(dataset, NaN_Edges = FALSE)

Arguments

dataset The dataset for which natural neighbors are identified along with a k-parameter

NaN_Edges Choice for computing natural neighbors. Computational heavy to compute

Details

NAN computes the natural neighbor eigenvalue and identifies natural neighbors in a dataset. The
natural neighbor eigenvalue is powerful as k-parameter for computing a k-nearest neighborhood,
being suitable for outlier detection, clustering or predictive modelling. Natural neighbors are de-
fined as two observations being mutual k-nearest neighbors. A kd-tree is used for kNN computation,
using the kNN() function from the ’dbscan’ package

Value

NaN_Num The number of in-degrees for observations given r

r Natural neighbor eigenvalue. Useful as k-parameter

NaN_Edges Matrix of edges for natural neighbors

n_NaN The number of natural neighbors

18 NOF

Author(s)

Jacob H. Madsen

References

Zhu, Q., Feng, Ji. & Huang, J. (2016). Natural neighbor: A self-adaptive neighborhood method
without parameter K. Pattern Recognition Letters. pp. 30-36. DOI: 10.1016/j.patrec.2016.05.007

Examples

Select dataset
X <- iris[,1:4]

Identify the right k-parameter
K <- NAN(X, NaN_Edges=FALSE)$r

Use the k-setting in an abitrary outlier detection algorithm
outlier_score <- LOF(dataset=X, k=K)

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)

Inspect the distribution of outlier scores
hist(outlier_score)

NOF Natural Outlier Factor (NOF) algorithm

Description

Function to calculate the Natural Outlier Factor (NOF) as an outlier score for observations. Sug-
gested by Huang, J., Zhu, Q., Yang, L. & Feng, J. (2015)

Usage

NOF(dataset)

Arguments

dataset The dataset for which observations have a NOF score returned

Details

NOF computes the nearest and reverse nearest neighborhood for observations, based on the natural
neighborhood algorithm. Density is compared between observations and their neighbors. A kd-tree
is used for kNN computation, using the kNN() function from the ’dbscan’ package

RDOS 19

Value

nb A vector of in-degrees for observations

max_nb Maximum in-degree observations in nb vector. Used as k-parameter in outlier
detection of NOF

r The natural neighbor eigenvalue

NOF A vector of Natural Outlier Factor scores. The greater the NOF, the greater the
outlierness

Author(s)

Jacob H. Madsen

References

Huang, J., Zhu, Q., Yang, L. & Feng, J. (2015). A non-parameter outlier detection algorithm based
on Natural Neighbor. Knowledge-Based Systems. pp. 71-77. DOI: 10.1016/j.knosys.2015.10.014

Examples

Select dataset
X <- iris[,1:4]

Run NOF algorithm
outlier_score <- NOF(dataset=X)$NOF

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)

Inspect the distribution of outlier scores
hist(outlier_score)

RDOS Relative Density-based Outlier Factor (RDOS) algorithm with gaus-
sian kernel

Description

Function to calculate the Relative Density-based Outlier Factor (RDOS) as an outlier score for
observations. Suggested by Tang, B. & Haibo, He. (2017)

Usage

RDOS(dataset, k = 5, h = 1)

20 RDOS

Arguments

dataset The dataset for which observations have an RDOS score returned

k The number of k-nearest neighbors used to identify reverse- and shared nearest
neighbors

h Bandwidth parameter for gaussian kernel. A small h put more weight on outly-
ing observations

Details

RDOS computes a kernel density estimation by combining the nearest, reverse nearest and shared
neighbors into one neighborhood. The density estimation is compared to the density estimation of
the neighborhoods observations. A gaussian kernel is used for density estimation, given a bandwidth
chosen by user. A kd-tree is used for kNN computation, using the kNN() function from the ’dbscan’
package.

It is a computational heavy task to identify reverse and shared neighbors from the kd-tree. Thus, the
RDOS has high complexity and is not recommended to apply to datasets with n>5000. The RDOS
function is useful for outlier detection in clustering and other multidimensional domains

Value

A vector of RDOS scores for observations. The greater the RDOS score, the greater outlierness

Author(s)

Jacob H. Madsen

References

Tang, B. & Haibo, He. (2017). A local density-based approach for outlier detection. Neurocomput-
ing. pp. 171-180. DOI: 10.1016/j.neucom.2017.02.039

Examples

Create dataset
X <- iris[,1:4]

Find outliers by setting an optional k
outlier_score <- RDOS(dataset=X, k=10, h=2)

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)

Inspect the distribution of outlier scores
hist(outlier_score)

RKOF 21

RKOF Robust Kernel-based Outlier Factor (RKOF) algorithm with gaussian
kernel

Description

Function to to calculate the RKOF score for observations as suggested by Gao, J., Hu, W., Zhang,
X. & Wu, Ou. (2011)

Usage

RKOF(dataset, k = 5, C = 1, alpha = 1, sigma2 = 1)

Arguments

dataset The dataset for which observations have an RKOF score returned

k The number of nearest neighbors to compare density estimation with

C Multiplication parameter for k-distance of neighboring observations. Act as
bandwidth increaser. Default is 1 such that k-distance is used for the gaussian
kernel

alpha Sensivity parameter for k-distance/bandwidth. Small alpha creates small vari-
ance in RKOF and vice versa. Default is 1

sigma2 Variance parameter for weighting of neighboring observations

Details

RKOF computes a kernel density estimation by comparing density estimation to the density of
neighboring observations. A gaussian kernel is used for density estimation, given a bandwidth with
k-distance. K-distance can be influenced with the parameters C and alpha. A kd-tree is used for
kNN computation, using the kNN() function from the ’dbscan’ package. The RKOF function is
useful for outlier detection in clustering and other multidimensional domains

Value

A vector of RKOF scores for observations. The greater the RKOF score, the greater outlierness

Author(s)

Jacob H. Madsen

References

Gao, J., Hu, W., Zhang, X. & Wu, Ou. (2011). RKOF: Robust Kernel-Based Local Outlier Detec-
tion. Pacific-Asia Conference on Knowledge Discovery and Data Mining: Advances in Knowledge
Discovery and Data Mining. pp. 270-283. DOI: 10.1007/978-3-642-20847-8_23

22 RKOF

Examples

Create dataset
X <- iris[,1:4]

Find outliers by setting an optional k
outlier_score <- RKOF(dataset=X, k = 10, C = 1, alpha = 1, sigma2 = 1)

Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)

Inspect the distribution of outlier scores
hist(outlier_score)

Index

COF, 2

DB, 3

INFLO, 5

KDEOS, 6
KNN_AGG, 7
KNN_IN, 8
KNN_SUM, 9

LDF, 10
LDOF, 12
LOCI, 13
LOF, 15
LOOP, 16

NAN, 17
NOF, 18

RDOS, 19
RKOF, 21

23

	COF
	DB
	INFLO
	KDEOS
	KNN_AGG
	KNN_IN
	KNN_SUM
	LDF
	LDOF
	LOCI
	LOF
	LOOP
	NAN
	NOF
	RDOS
	RKOF
	Index

