DDoutlier - Distance & Density-Based Outlier Detection
Outlier detection in multidimensional domains.
Implementation of notable distance and density-based outlier
algorithms. Allows users to identify local outliers by
comparing observations to their nearest neighbors, reverse
nearest neighbors, shared neighbors or natural neighbors. For
distance-based approaches, see Knorr, M., & Ng, R. T. (1997)
<doi:10.1145/782010.782021>, Angiulli, F., & Pizzuti, C. (2002)
<doi:10.1007/3-540-45681-3_2>, Hautamaki, V., & Ismo, K. (2004)
<doi:10.1109/ICPR.2004.1334558> and Zhang, K., Hutter, M. &
Jin, H. (2009) <doi:10.1007/978-3-642-01307-2_84>. For
density-based approaches, see Tang, J., Chen, Z., Fu, A. W. C.,
& Cheung, D. W. (2002) <doi:10.1007/3-540-47887-6_53>, Jin, W.,
Tung, A. K. H., Han, J., & Wang, W. (2006)
<doi:10.1007/11731139_68>, Schubert, E., Zimek, A. & Kriegel,
H-P. (2014) <doi:10.1137/1.9781611973440.63>, Latecki, L.,
Lazarevic, A. & Prokrajac, D. (2007)
<doi:10.1007/978-3-540-73499-4_6>, Papadimitriou, S., Gibbons,
P. B., & Faloutsos, C. (2003) <doi:10.1109/ICDE.2003.1260802>,
Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000)
<doi:10.1145/342009.335388>, Kriegel, H.-P., Kröger, P.,
Schubert, E., & Zimek, A. (2009) <doi:10.1145/1645953.1646195>,
Zhu, Q., Feng, Ji. & Huang, J. (2016)
<doi:10.1016/j.patrec.2016.05.007>, Huang, J., Zhu, Q., Yang,
L. & Feng, J. (2015) <doi:10.1016/j.knosys.2015.10.014>, Tang,
B. & Haibo, He. (2017) <doi:10.1016/j.neucom.2017.02.039> and
Gao, J., Hu, W., Zhang, X. & Wu, Ou. (2011)
<doi:10.1007/978-3-642-20847-8_23>.